A neuro-fuzzy approach to self-management of virtual network resources

نویسندگان

  • Rashid Mijumbi
  • Juan-Luis Gorricho
  • Joan Serrat
  • Meng Shen
  • Ke Xu
  • Kun Yang
چکیده

Network virtualisation promises to lead to better manageability of the future Internet by allowing for adaptable sharing of physical network resources among different virtual networks. However, the sharing of resources is not trivial as virtual nodes and links should first be mapped onto substrate nodes and links, and thereafter the allocated resources managed throughout the lifetime of the virtual network. In this paper, we design and evaluate reinforcement learning-based neuro-fuzzy algorithms that perform dynamic, decentralised and coordinated self-management of substrate network resources. The objective is to achieve better efficiency in the utilisation of substrate network resources while ensuring that the quality of service requirements of the virtual networks are not violated. The proposed algorithms are evaluated through comparisons with a Q-learning-based approach as well as two static resource alloca-

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling of streamflow- suspended sediment load relationship by adaptive neuro-fuzzy and artificial neural network approaches (Case study: Dalaki River, Iran)

Modeling of stream flow–suspended sediment relationship is one of the most studied topics in hydrology due to itsessential application to water resources management. Recently, artificial intelligence has gained much popularity owing toits application in calibrating the nonlinear relationships inherent in the stream flow–suspended sediment relationship. Thisstudy made us of adaptive neuro-fuzzy ...

متن کامل

Adaptive Network-based Fuzzy Inference System-Genetic Algorithm Models for Prediction Groundwater Quality Indices: a GIS-based Analysis

The prediction of groundwater quality is very important for the management of water resources and environmental activities. The present study has integrated a number of methods such as Geographic Information Systems (GIS) and Artificial Intelligence (AI) methodologies to predict groundwater quality in Kerman plain (including HCO3-, concentrations and Electrical Conductivity (EC) of groundwater)...

متن کامل

A Model for Evaluation and Ranking of Human Resources Risks with an Intelligent Neuro-Fuzzy Approach (ANFIS) In National Iranian Gas Company

The present study aimed to design a model of human resources risks assessment and ranking using the neuro-fuzzy approach as one of the methods of artificial intelligence in Iran national Gas Company. Three main steps were taken to achieve this goal: the first step was to identify the evaluation criteria that were achieved by literature reviews and the theoretical foundations of the research bas...

متن کامل

The use of wavelet - artificial neural network and adaptive neuro fuzzy inference system models to predict monthly precipitation

Precipitation forecasting due to its random nature in space and time always faced with many problems and this uncertainty reduces the validity of the forecasting model. Nowadays nonlinear networks as intelligent systems to predict such complex phenomena are widely used. One of the methods that have been considered in recent years in the fields of hydrology is use of wavelet transform as a moder...

متن کامل

Artificial intelligence-based approaches for multi-station modelling of dissolve oxygen in river

ABSTRACT: In this study, adaptive neuro-fuzzy inference system, and feed forward neural network as two artificial intelligence-based models along with conventional multiple linear regression model were used to predict the multi-station modelling of dissolve oxygen concentration at the downstream of Mathura City in India. The data used are dissolved oxygen, pH, biological oxygen demand and water...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2015